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. PHOTOEMISSION STUDIES OF TIME-RESOLVED SURFACE REACTIONS:
tL ISOTHERMAL DESORPTION OF CO FROM Ni(111)*t

G.W. Rubloff

‘ IBM Thomas J. Watson Research Center
I Yorktown Heights, NY 10598

ABSTRACT

A new dynamic approach to spectroscopic studies of surface reactions is described. A
fast-acting UHV gas dosing system is employed to prepare the adsorbed species in an initial
chemisorption state under reaction conditions of elevated temperature and/or pressure (to ~ 1
torr). Individual reaction steps are then resolved in time using photoemission spectroscopy to
probe the surface electronic structure, yielding information about the kinetics of individual
reaction steps, the nature of chemisorbed species, and the surface reaction path. As a first
application of this approach, the kinetics of isothermal desorption of CO from Ni(111) is
studied for temperatures up to ~ 230 °C. The coverage-dependence of the rate constants is
revealed directly in the shape of each desorption curve. Preexponential (frequency) factors as
well as desorption activation energies show significant variation with coverage.
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t Presented at the Second European Conference on Surface Science. Cambridge, England,
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I. Introduction

Although they have provided much valuable information, spectroscopic studies of surface
reactions usually do not directly address two important questions. First, what is the nature of
chemisorbed species and reaction pathways under conditions of elevated temperature and/or
reactant gas pressure? Some information on this question is gained by the use of annealing
cycles to drive the reaction through various steps.! Second, what are the detailed kinetics of
individual surface reaction steps? Deconvolution of lineshapes obtained from thermal conver-
sion spectroscopy?-? (or thermal desorption spectroscopy for reaction steps involving desorbing
products) has been the most widely used (but not the only) technique to obtain kinetic

parameters.

A new dynamic approach to spectroscopic studies of surface reactions is described here.
By time-resolving individual reaction steps in an isothermal measurement, it presents the
possibility of addressing these two questions more directly and effectively. Preliminary results
are given for a first application of this approach --- to the kinetics of isothermal desorption of

CO from Ni(111).

II. Time-Resolved Approach

This time-resolved approach is illustrated schematically in the example depicted in Fig. 1.
With the sample held at elevated (reaction) temperature, the clean surface is exposed briefly to
the reactant gas using a fast-acting UHV gas dosing system. At the end of the gas dose, an
initial chemisorbed phase is present on the surface, at some coverage (e.g. saturation) and
possibly having been formed at elevated pressures. Spectroscopies such as ultraviolet pho-
toemission (UPS) are then used to monitor the time-evolution of surface species, which
proceed through various reaction steps with conversion rates determined by temperature,
coverage, pressure, etc. The UPS measurements provide two potential sources of information

to answer two different kinds of questions:
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1. Spectral dependence. By measuring the UPS spectrum of the surface species within

some time window, one can determine the nature of chemisorbed species.formed under
these reaction conditions after a particular reaction time. The chronological sequence

of species observed reveals the surface reaction path.

2. Time dependence. By monitoring the time-evolution of parts or all of the UPS

spectrum for a given surface species, the kinetics (rate constants) of the preceding or
following reaction step are measured. Activation energies A and pre-exponential
(frequency) factors K, for these rate constants are then deduced from the temperature
dependence of these rate constants K(T) = K, exp (=A/kT). Clearly it is desirable to
measure the kinetics over as wide as possible a range of sample temperatures (or

equivalently, reaction times).

In this approach, time-resolution of surface reaction steps is achieved by use of the
fast-acting gas dosing valve. It is a UHV bakeable device fully compatible with the vacuum
quality of the surface spectroscopy system. The valve is differentially pumped and consists of
multiple stages of blades which either cover or leave open a series of small apertures between
the gas load chamber and the sample. It is switched on (open) or off (closed) by a fast-acting
solenoid outside the vacuum, which drives a bellows and thereby the internal moving parts.
The switching time of the valve is 2-3 msec, so that exposure times as short as a few msec are
readily achieved, with adjustable duty cycle. The dynamic range of measurable reaction times
thus extends to potentially 108, from ~ 10-2 sec to ~ 10¢ sec, the time for significant
contamination in the UHV system. The rapid switching time of the gas dosing system thus
provides access to a much broader dynamic range of reaction times than temperature-step

isothermal measurements usuvally do.

The conductance of the valve is ~ 3 ml/sec on and ~ 3x 103 ml/sec off. Since the local
pressure P, ., at the sample surface is determined by gas flow through the valve in either

position, Pouyp/ Peamp = 10°. Furthermore, the actual valve portion of the dosing system is

BT it




Page 3

located close to the sample, with a short nozzle after the valve to direct the gas onto the

surface at the focal point of the electron spectrometer; this produces an enhancement of Pramp

compared to the residual gas pressure P, in the UHV chamber so that Peamp/Psys = 10%,
independent of valve position. An auxiliary solenoid-operated valve makes it possible to pump
out the gas load chamber quickly (< 0.5 sec) when measurements are to be done for reaction

times much longer than the dosing time. As a result, the gas exposure during the on time can

be kept much greater ( ~ 100X) than the accumulated exposure during the off time.

The enhancement Py, /P, = 107 and the large system volume (~ 150 liters) make it
possible to inject a brief dose of gas at relatively high pressure (~ 1 torr) while maintaining
P,ys < 5x10=3 torr; under such conditions the electron multiplier used to measure photoelec-
tron intensity can be left on without damage. In this way, electron spectroscopy measurements
can be made immediately following the dose to study adsorbed phases formed at reaction

pressures much closer to those of practical interest.

III. CO/Ni(111) Desorption Kinetics

A number of methods have been employed to measure desorption kinetics,3+ including
temperature-programmed desorption,’6 equilibrium adsorption isosteres,>7 and in a few
instances isothermal desorption.® In most cases the coverage-dependence of the desorption

activation energy A is obtained while "normal" coverage-independent preexponential factors
Ko ~ 10'3 sec—! are assumed. Deconvolution techniques to extract both A and Ko are
known.3~6 In a recent study? of CO desorption from Ru(001) which combined all three
approaches, Pfniir et. al. demonstrated that both A and Ko have significant coverage-

dependence.

As an initial application for this time-resolved reaction study approach, the kinetics of
desorption of molecularly chemisorbed CO from Ni(111) have been measured using the

time-dependence of the UPS intensity; no attempt has been made here to study the spectral
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dependence to search for different chemisorbed species or reaction pathways characteristic of
elevated temperature and/or pressure. The isosteric heat of adsorption for CO/Ni(111) has
previously been determined from equilibrium adsorption isosteres (log pco vs. T—!) at various
coverages (measured by work function change A¢) by Christmann, Schober, and Ertl (CSE).’
These measurements were carried out over the temperature range 23<T<164°C; the accumu-
lation of surface carbon produced by the disproportionation reaction 2CO - C 4 + COzf
prevented such measurements above 164°C. Their results show a coverage-dependent
activation energy for desorption which varies from ~ 30.C¢ kcal/mole (~1.30 eV) at low
coverage (@) to ~ 23.5 kcal/mole (~1.02 eV) near saturation coverage. A normal preexpo-

nential factor Ko = 1. x 10'? sec=! was assumed.

The intensity of the UPS signal (using He I radiation, 21.2 eV) at the 50/1# adsorbate
orbital (~ 8 eV below the Fermi energy) was taken as proportional to the coverage of
chemisorbed CO. This assumption is supported by the correspondence between the exposure-
dependence of the UPS signal and the detailed adsorption results for this system obtained by

CSE.

The time-dependence of the UPS signal for sample temperature T = 175°C is shown in
Fig. 3 for a 200 msec dose after a 100 msec delay (curve a) and then for a 300 msec dose
after a similar delay (curve b).? The CO coverage (essentially proportional to the UPS signal)
saturates in ~ 50 msec, as seen clearly by comparing the two curves. Fairly rapid desorption
(in ~ 250 msec) is then observed following the dose because the sample temperature is near
that of the flash desorption peak. Both curves in Fig. 2 represent averages of 13 successive
runs. The amplitude of the UPS intensity change (coverage change) is somewhat smaller in
the second set because the disproportionation reaction has poisoned (filled) some of the
surface sites for CO chemisorption at this temperature. Because a complete desorption curve
can be obtained even for a single dosing cycle, this time-resolved approach is viable even when

competing reactions (like disproportionation above ~ 165 °C in this case) occur with compara-
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ble rates. This represents a significant advantage for studies of the desorption reaction
compared to the adsorption isostere approach, in which a single measurement involves many

adsorption-desorption cycles.

Similar data showing the temperature-dependence of CO desorption rates from 122°C to
227°C is seen in Fig. 3. A change in desorption rate is clearly observable for only ~ 10°C

change in sample temperature.

The coverage-dependence of the desorption rate constants can be seen directly from the
shape of the desorption curve at a single fixed temperature, as illustrated in Fig. 4 for T = 162

°C. Here the experimental data is shown together with calculated desorption curves
8(t) = 8 e"KoEs! o g ¢="/"oEs (1)
assuming first-order desorption (desorption rate constant Kpgs coverage-independent).

Clearly the measured curve is not simply a single exponential, but instead Kpgs changes with

Coverage as well as temperature.

The temperature-dependent desorption rate constant is given by
Kpgs(T) = K e~3/kT 2
where A is the activation energy for desorption ( = heat of chemisorption) and K, is the
pre-exponential (frequency) factor. To determine the coverage-dependence of A and Ko. the

coverage-dependent desorption rate constants have been calculated from the desorption curves

Kpes(T.0) : S 3)

Typical errors in these Kpgg values are £10-20%. In the simplest analysis, the resulting
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Arrhenius plots ( Kpgg vs. 1/T) can be fit by a straight line in order to determine A and Ko

for each coverage value.

Such straight line fits are used to represent the actual data in the Arrhenius plots shown
for various coverages in Fig. S. These results should be regarded as preliminary, and a more
complete analysis and discussion will be published elsewhere. For comparison, the dashed
lines show the predictions from the equilibrium adsorption-isostere results of CSE’, assuming a

constant K = 1. x 10'3 sec=!. At this stage, several features seem clear:

1. A decreases with 8, in agreement with the results of CSE’; however, somewhat
smaller A values (by ~ 20%) are found here.

2. Kg as well as A changes significantly with 8, as found for CO/Ru(001)3.

3. Kg values are significantly smaller (by a factor ~ 102 - 103) than "normal"” values.

4. The 8-dependence of Kpgs becomes weaker at higher temperature.

5. The variations of A and K, with coverage tend to cancel each other, resulting in
desorption rate constants Kpg which are much less sensitive to coverage than the

variation in either Kq or exp(-A/kT) alone.

IV. Conclusions

Similar to the case? of CO/Ru(001), the present results show that both the desorption
activation energy A and the preexponential (frequency) factor K, change markedly with
coverage, although the resulting desorption rate constants KpEs are less sensitive to coverage.
A reasonably direct and accurate determination of both parameters and their coverage-
dependence appears necessary for a useful understanding of the kinetics of individual surface
reaction steps, especially in more complicated reactions in which these details may in fact alter

the predominant reaétion pathway in different temperature regimes.
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As illustrated in the present example of CO desorption from Ni(111), the time-resolved
reaction study approach described here provides a way to directly measure the kinetics of
individual surface reaction steps. This can be done even if the step involves no desorption
products. It can be employed even in the presence of competing reactions. Furthermore, it
gives a way to investigate the surface reaction at elevated temperature and/or pressure (closer
to reaction conditions) and in the future to reveal the nature of chemisorbed species and

reaction pathways under such conditions.
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a) after 100 msec delays and 300 msec doses (curve b) after similar delays. The
photoemission intensity of the CO S5o0/1w molecular orbitals represents the

coverage of chemisorbed CO.
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as a straight line fit. Dashed lines: predictions from the equilibrium adsorption

isostere data of Ref. 7, assuming constant Ko = 1. x 1013 sec-1.
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